CHEMBIOCHEM

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2009

Supporting Information

Biochemical Characterization of a Uranyl-Specific DNAzyme

Andrea K. Brown, Juewen Liu, Ying He, and Yi Lu*

Department of Chemistry, Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA

* yi-lu@illinois.edu

The optimal DNAzyme structure

The conserved and crucial DNAzyme sequence is presented in Figure 1B of the paper. Based on this sequence, the DNAzyme can be rationally optimized to reduce size and improve activity, and shown in Figure 1S is one of the most optimal DNAzyme secondary structure. It contains only a G•A pair in the substrate binding arm, while the remaining base pairs are all Watson-Crick pairs. In addition, the size of the loop in the replaceable stem-loop structure has been decreased from nine to four nucleotides. This enzyme has a rate constant of 2.0 min⁻¹ (50 mM MES, pH 5.5, 300 mM NaNO₃ or NaCl, 1 μM uranyl).

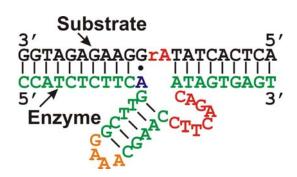


Figure S1. The secondary structure of an optimal uranyl-dependent DNAzyme.